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Table 3. Bond lengths and angles

Cl-0, 1-453+0-009 A ] weighted

C1-0, 1-439 + 0-009 ] mean

Cl-O, 146510008 | 1-452+0-005 A
0,Cl O, 108° 9'+30’

0,-Cl-0,
0,-Cl O,

111° 307+ 30"
110° 307 + 30’
again demonstrated the importance of correcting for
rotational oscillation.

Hydrogen atoms

Leec & Carpenter were unable to find the hydrogen
atoms in projection, nor did they find three O, ::- O
distances shorter than the others such as might be
expected for a hydrogen-bonded H,0+ ion. They sug-
gested either (i) that there is free rotation of the hydrogen
atoms about the oxygen atom, or (ii) that the hydrogen
atoms were equidistant from pairs of oxygen atoms on
the neighbouring perchlorate ions.

In an endeavour to locate the hydrogen atoms a three-
dimensional difference svnthesis was carried out with F,
from the final anisotropic parameters. As might be
expected from the small value of R, there were no large
peaks or throughs and the positive values within a radius
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of 1-5 A from O, were smaller than those in positions
which could not be attributed to hydrogen atoms. This
evidence indicates the free rotation of the hydroxonium
ions, and is consistent with the preliminary results of a
neutron-diffraction study (Smith & Levy, 1959).

Computation was carried out on the Leeds University
Ferranti Pegasus computer with programmes published
in 1960 (Cruickshank, Pilling and in part Bujosa, Lovell
& Truter).

I am grateful for the use of the facilities of the Comput-
ing Laboratory and to my colleagues for the use of their
programmes.
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Introduction

Klein (1884) gave an account of the subgroups con-
tained in any point-group, but thought it unnecessary
to cnumerate these subgroups in his book. Rccently
Wittke & Garrido (1959) tabulated some of these, but
restricted their attention to crystallographie point-groups.
In this present note the treatment is extended to the
icosahedral point-groups, and the general case for the
point-groups 7, r2, rm, ¥, ¥m, r/m and r/mmm can be
obtained by Klein’s analysis. The notation here used is
the same as that of Wittke & Garrido.

Definition of a coloured polyhedron

A ‘coloured polyhedron’ has its shape governed by a
point-group G but has its faces coloured in a way that
obeys a different point-group g. g is a subgroup of G,
and g’ is any group for which g¢.8"=G. G and g have
M and my faces in their general forms respectively, thus
the numner of colours s required for the general coloured
polyhedron is M/mgy. All the symmetry operations of G
not included in g do not necessarily form a group, but
must change the colour of any face on which they act,
and these are called colour symmetry operations.

Multicoloured faces

The number of different eolours related by me (colour
mirror), re (colour r-fold axis) and 7.m, (r. in the plane
of m¢) arc clearly 2, r and 2r respectively. A special form
of G is produced if the face normal lies in a mirror planc

or parallels an »-fold axis, and this is denoted in the
tables by m or ». The faces of any special form can be
sectioned by lines in such a way that the sections, con-
sidered as separate, obey the general point-group sym-
metry. These lines can be obtained from the edges

Table 1. The number of colours n present on each face of
the special forms of the point group dm3m

g nig 8 5 3 2 m g *
dm3m 120 1 1 1 1 i 1
532 60 2 2 2 2 2 m
52 10 12 2,10 6 2.4 2 3m
5 b 24 2,10 6 4 2 3m
5 10 12 2,10 6 4 2 3m
_om 10 12 1.5 3 2 1.2 B
am(2) 20 6 1,5 3 2 1.2 3
m3(2) 24 5 5 23 14 12 5 *
23 12 10 10 2,6 24 2 dm ¥
32 6 20 10 2,6 2,4 2 om *
3 3 40 10 2.6 4 2 dm  *
3 6 20 10 26 4 2 sm *
_3m 6 20 5016 24 12 500%
3m(2) 12 10 5 1,6 24 1,2 > 00*
222 4 30 10 6 2.4 2 dm *
2 2 60 10 6 2.4 2 Sm3m ¥
mmm(2) 8 15 5 3,6 14 1,2 5
mm(2) 4 30 5,10 36 124 12 532 *
2/m 4 30 5,10 3,6 2,4 1,2 532 *
m 2 60 5,10 3,6 24 1,22 532 *
1 2 80 10 6 4 2 532 *
1 1 120 10 6 4 2 Sm3m *
* Denotes a crystallographic subgroup.
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Table 2. The number of colours n present on each face of
the special forms of the point group 532

g my s b 3 2 g *
332 60 1 1 1 1 1
52 10 6 1,5 3 1.2 3
B H 12 1,5 3 2 3

23 12 5 5 1,3 1.2 5 *

32 6 10 5 1,3 1.2 5 *

3 3 20 5 1.3 2 5 o*

222 4 15 5 3 12 5 *

2 2 30 5 3 1.2 52 *

1 1 60 5 3 2 532 *

* Denotes a crystallographic subgroup.
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Fig. 1. G=5m3m, g=m3.
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Fig. 2. G=5m3m, g=23.
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Fig. 3. G=532, g=23.

between faces of the general form whose normals tend to
parallel those of the special form. If the special form
face normal lies in an m, or is parallel to an 7., or both,
then the scetions of this face will be in n different colours,
which will be 2, » and 2r respectively. Wittke & Garrido
superimposcd all these n colours on the face, but then
this sometimes destroys colour operators. A simple
cxample is given by G =m3m and g =23 with the special
form (110), (or in this notation 2). All the faces then have
n=4 and if these are supcrimnposed the colour mirror
planes become true mirrors.

A symmetry operator, say r, might occur more than
once in G but not all of these need belong to g. Then
some faces of the special form produced when the face
normals are parallel to the r-fold axis will be brought.
into self-coincidence by an 7., whereas the other faces
will still have n =1. When this occurs the two values of
n are tabulated in the same space.

Tables 1 and 2 give n for the icosahedral point-groups,
and a note is made of the cases where g is a crystallo-
graphic point-group. The interesting cases, Figs. 1, 2 and 3
have cubic subgroups. Their importance lics in the fact
that some viruses which crystallize in the cubic system
have the symmetry of the point-group 5m3m or 532 about
cach lattice point (Horne et al., 1959).

I wish to thank Dr N. Joel for his encouragement and
Dr W. Cochran for valuable criticism.
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